Climate IMPACT of EU building materials: Data compilation and statistical analysis of global warming potential in environmental product declarations
Knowledge about and the management of greenhouse gas (GHG) emissions associated with the production and processing of building materials play a critical role in mitigating the construction sector’s climate impact. However, crucial data on the GHG emissions intensity of various construction products remain challenging for practitioners and researchers to access, as it is scattered across decentralized databases.
This study compiles and analyses GHG emissions data for construction products from the 27 European Union (EU-27) member states. A unified database was developed by aggregating Global Warming Potential (GWP) scores from publicly available Environmental Product Declarations (EPDs). Descriptive statistics were applied to analyse GWP results across four regions and each EU-27 country by categorizing construction products into various distinct groups.
The study demonstrates the feasibility of consolidating building materials and products into twelve distinct categories. Among these materials, aluminium exhibits the highest GWP average score at 21 kg CO2e/kg, while concrete has the lowest at 0.09 kg CO2e/kg. Most variation coefficients fall within the range of 33 % to 80 %. Overall, the raw material supply stage (A1) contributes 80 % of the total GWP, followed by transport (A2) at 1 %, production (A3) at 7 %, transport (A4) at 3 %, construction (A5) at 3 %, the use phase (B1-B3) at less than 1 %, waste processing (C3) at 1 %, and disposal (C4) at 3 %. The findings of this study are critical for modelling the embodied and whole life-cycle GHG emissions of buildings and building stocks across Europe.