Life-Cycle Assessment of an Office Building Influence of the Structural Design on the Embodied Carbon Emissions

José Humberto Matias de Paula Filho, Marina D’Antimo, Marion Charlier and Olivier Vassart

In 2020, 37% of global CO2eq. emissions were attributed to the construction sector. The major effort to reduce this share of emissions has been focused on reducing the operational carbon of buildings. Recently, awareness has also been raised on the role of embodied carbon: emissions from materials and construction processes must be urgently addressed to ensure sustainable buildings. To assess the embodied carbon of a building, a life-cycle assessment (LCA) can be performed; this is a science-based and standardized methodology for quantifying the environmental impacts of a building during its life. This paper presents the comparative results of a “cradle-to-cradle” building LCA of an office building located in Luxembourg with 50 years of service life. Three equivalent structural systems are compared: a steel–concrete composite frame, a prefabricated reinforced concrete frame, and a timber frame. A life-cycle inventory (LCI) was performed using environmental product declarations (EPDs) according to EN 15804. For the considered office building, the steel–concrete composite solution outperforms the prefabricated concrete frame in terms of global warming potential (GWP). Additionally, it provides a lower GWP than the timber-frame solution when a landfill end-of-life (EOL) scenario for wood is considered. Finally, the steel–concrete composite and timber solutions show equivalent GWPs when the wood EOL is assumed to be 100% incinerated with energy recovery.

Want to stay up to date?

Sign up to our mailing list to receive regular updates on the most exciting news, research, case studies, and events related to sustainable design.